SEMANA 13:
En el concreto, es tan importante conocer las deformaciones como los esfuerzos. Esto es necesario para estimar la pérdida de pre esfuerzo en el acero y para tenerlo en cuenta para otros efectos del acortamiento elástico
Tales deformaciones pueden clasificarse en cuatro tipos:
- deformaciones elásticas
- deformaciones laterales
- deformaciones plásticas
- deformaciones por contracción
1. DEFORMACIONES ELÁSTICAS:
El término deformaciones elásticas es un poco ambiguo, puesto que la curva esfuerzo-deformación para el concreto no es una línea recta aun a niveles normales de esfuerzo, ni son enteramente recuperables las deformaciones.. Entonces es posible obtener valores para el módulo de elasticidad del concreto. El módulo varía con diversos factores, notablemente con la resistencia del concreto, la edad del mismo, las propiedades de los agregados y el cemento, y la definición del módulo de elasticidad en sí, si es el módulo tangente, inicial o secante.
Aún más, el módulo puede variar con la velocidad de la aplicación de la carga y con el tipo de muestra o probeta, ya sea un cilindro o una viga. Por consiguiente, es casi imposible predecir con exactitud el valor del módulo para un concreto dado.
2. DEFORMACIONES LATERALES:
Cuando al concreto se le comprime en una dirección, al igual que ocurre con otros materiales, éste se expande en la dirección transversal a la del esfuerzo aplicado. La relación entre la deformación transversal y la longitudinal se conoce como relación de Poisson. La relación de Poisson varía de 0.15 a 0.20 para concreto.
DEFORMACIONES POR CONTRACCIÓN:
Las mezclas para concreto normal contienen mayor cantidad de agua que la que se requiere para la hidratación del cemento. Esta agua libre se evapora con el tiempo, la velocidad y la terminación del secado dependen de la humedad, la temperatura ambiente, y del tamaño y forma del espécimen del concreto. El secado del concreto viene aparejado con una disminución en su volumen, ocurriendo este cambio con mayor velocidad al principio que al final.
De esta forma, la contracción del concreto debida al secado y a cambios químicos depende solamente del tiempo y de las condiciones de humedad, pero no de los esfuerzos.
LAS DIFERENTES FORMAS DE RESISTIR DEL CONCRETO
- Concreto de Alta Resistencia
- Resistencia Mecánica
- El concreto como material compuesto
- Modulo de Elasticidad del Concreto
- Relación de Poisson del Concreto
A. CONCRETO DE ALTA RESISTENCIA
• Para la fabricación de los concretos de alta resistencia, es necesario reducir la relación a/c a valores menores de 0.40, pudiendo llegar hasta 0.30. En el rango de a/c 0.40 - 0.70, el componente más débil del concreto es el cemento y la interface cemento-agregado; pero cuando se va reduciendo el a/c, éstos dejan de ser los más débiles del sistema, incrementándose la resistencia.
• En los concretos de alta resistencia con relaciones a/c < 0.40, el factor más débil y limitante está constituido por los agregados, cuyo comportamiento dependen de sus características mineralógicas, su forma y resistencia mecánica propia de los agregados. Estos parámetros deben optimizarse para alcanzar altas resistencias.
• En el proceso de obtener altas resistencias del concreto para relaciones a/c < 0.45, los aditivos super plastificantes cumplen un papel muy importante al contribuir a reducir el agua de mezclado y mejorar la trabajabilidad.
• Complementariamente al uso de los aditivos, para alcanzar resistencias superiores a los 800 Kg/cm2, es necesario utilizar en el concreto la micro sílice (humo de sílice) que por su propiedad puzolánica contribuye a incrementar la resistencia del concreto.
B. RESISTENCIA MECÁNICA
• La resistencia mecánica del concreto endurecido ha sido tradicionalmente la propiedad más identificada con su comportamiento como material de construcción.
• En términos generales, la resistencia mecánica, que potencialmente puede desarrollar el concreto, depende de la resistencia individual de los agregados y de la pasta de cemento endurecida, así como, de la adherencia que se produce en ambos materiales. En la práctica, habría que añadir a estos factores el grado de densificación logrado en la mezcla ya que, como ocurre con otros materiales, la proporción de vacíos en el concreto endurecido tiene un efecto decisivo en su resistencia.
• Cuando las partículas de los agregados son duras y resistentes, la resistencia mecánica del concreto tiende a ser gobernada por la resistencia de la pasta de cemento y/o por la adherencia de esta con los agregados. Por lo contrario si los agregados son débiles, la resistencia intrínseca de estos se convierte en una limitación para la obtención de altas resistencias, lo cual no quiere decir que el concreto no pueda ser más resistente que las partículas individuales de los agregados.
• La adquisición de la resistencia mecánica de la pasta de cemento conforme endurece es una consecuencia inmediata del proceso de hidratación del cemento.
C. EL CONCRETO COMO MATERIAL COMPUESTO
• Podemos definir un material compuesto como la combinación tridimensional de por lo menos dos materiales químicamente y mecánicamente distintos con una interfase definida que separa los componentes. Este material polifásico tendrá diversas características de sus componentes originales.
• Ha sido muy conocido que las propiedades de materiales multifásicos pueden ser muy superiores a las características de las fases individuales tomadas por separado, particularmente cuando estos vienen de las fases débiles o quebradizas.
• Hoy, sabemos que ni la roca, ni la pasta del cemento pura han determinado los materiales de construcción útiles, la roca porque es demasiado quebradiza, y el cemento porque se quiebra en la sequedad. Sin embargo, juntos se combinan para formar materiales de construcción.
• Cuando las partículas de los agregados son duras y resistentes, la resistencia mecánica del concreto tiende a ser gobernada por la resistencia de la pasta de cemento y/o por la adherencia de esta con los agregados. Por lo contrario si los agregados son débiles, la resistencia intrínseca de estos se convierte en una limitación para la obtención de altas resistencias, lo cual no quiere decir que el concreto no pueda ser más resistente que las partículas individuales de los agregados.
• La adquisición de la resistencia mecánica de la pasta de cemento conforme endurece es una consecuencia inmediata del proceso de hidratación del cemento.
D. MODULO DE ELASTICIDAD DEL CONCRETO
Los modelos de sistemas compuestos simples se han aplicado al concreto
E. RELACIÓN DE POISSON DEL CONCRETO
La relación entre la deformación lateral que acompaña una deformación axial aplicada y la deformación final se utiliza en el diseño y análisis de muchos tipos de estructuras. La relación de Poisson del concreto varia en un rango de 0.11 a 0.21 (generalmente de 0.15 a 0.20) cuando se determina por medición de la deformación, tanto para el concreto normal como para el concreto ligero.
Para este último método se requiere la medición de la velocidad de pulso,V, y también la de la frecuencia fundamental de resonancia de la vibración longitudinal de una viga de longitud l. La relación de Poisson, μ, se puede calcular por medio de la expresión.
Generalmente se indica que la relación de Poisson es menor en el concreto de alta resistencia.
3. SOLICITACIONES ESTÁTICAS, REPETIDAS Y DINÁMICAS
- La extensa investigación tuvo como objetivo analizar los avances en el diseño de mezclas asfálticas para carreteras. Esto representa un aspecto muy importante desde el punto de vista socioeconómico tanto para el país como en el ámbito internacional.
- El desarrollo de un criterio de diseño de concretos asfálticos para carretera identificado como Superpave, el cual ha despertado interés internacional, y que está en proceso de verificación y realización de modificaciones.
- En el extenso programa desarrollado en el Instituto de Ingeniería de la UNAM se analizaron los resultados de dicho programa. Se decidió analizar únicamente la fase uno del criterio Superpave ya que las fases dos y tres se consideraron inadecuadas.
4. MECANISMO DE ROTURA DEL CONCRETO
Las probetas que se ensayadas obtendrán un resultado que podemos observar en el concreto como roturas en su estructura.
Las probetas a ser ensayadas, estarán sujetas a las tolerancias de tiempo indicadas:
Para máquinas operadas hidráulicamente la velocidad de la carga estará en el rango de 0,14 a 0,34 MPa/s. Se aplicará la velocidad de carga continua y constante desde el inicio hasta producir la rotura de la probeta.
TIPOS DE FRACTURAS:
DETERMINACIÓN DE LA RESISTENCIA DEL CONCRETO POR ENSAYOS DESTRUCTIVOS
El propósito fundamental de medir la resistencia de los especímenes de pruebas de concreto es estimar la resistencia del concreto en la estructura real.
LA EXTRACCIÓN DE NÚCLEOS: pueden utilizarse también para descubrir separación por acumulación de agregado o para verificar la adherencia en las juntas de construcción o para verificar el espesor del pavimento.
ENSAYO DE EXTRACCIÓN DE NÚCLEOS:
• Los corazones de concreto son núcleos cilíndricos que se extraen haciendo una perforación en la masa de concreto con una broca cilíndrica de pared delgada; por medio de un equipo rotatorio como especie de un taladro al cual se le adapta la broca con corona de diamante, carburo de silicio u otro material similar; debe tener un sistema de enfriamiento para la broca, impidiendo así la alteración del concreto y el calentamiento de la broca.
• Elementos estructurales tendrán un diámetro de al menos 95mm cuando las longitudes de estos estén de acuerdo a los métodos de prueba ASTM C 174.
• Siempre que sea posible, los núcleos se extraerán perpendicularmente a una superficie horizontal, de manera que su eje sea perpendicular a la capa de CONCRETO.
PROCEDIMIENTO - ENSAYO DE EXTRACCIÓN DE NÚCLEOS
• Ubicamos el taladro en el lugar a perforar donde previamente no se detectó ningún elemento metálico.
• Conectamos el dispositivo de la bomba de vacío a la base del taladro de extracción mediante tornillo.
• Conectamos la manguera de agua a una llave cercana y al taladro para que el agua bañe la punta de la broca diamantada y no se dañe.
• Tomar especímenes solamente cuando del concreto endurecido, para lograr una perfecta unión entre el mortero y el agregado grueso. No usar especímenes dañados.
• Humedecemos la superficie de asentamiento de la base del taladro. Colocamos la base del taladro sobre la superficie a perforar. Nivelamos la base del taladro. Encendemos el compresor con la bomba de vacío para que quede acoplada la base del taladro con la superficie del espécimen a perforar dándonos una lectura en el manómetro. El espécimen se debe taladrar perpendicular a la superficie. Registrar y reportar el ángulo entre el eje del taladro y el plano horizontal.
• Conectamos el taladro de extracción a una toma de corriente o al generador de energía y empezamos a taladrar perpendicularmente a la superficie, abriendo el paso de agua para no dañar la broca.
• Evitar el movimiento del taladro, horizontalmente porque puede romper el espécimen, además se puede perder la adhesión de la base del taladro.
• Una vez que ya se tenga el espécimen requerido, determinar su longitud y verificar si es aceptable.
• En la extracción de una losa remueva especímenes lo suficientemente grandes para realizar la prueba requerida, las cuales no se encuentren dañadas.
• Tener en cuenta las condiciones de humedad, aserrado de los extremos, transporte, almacenamiento y métodos de prueba después de la extracción del núcleo según la necesidad del ensayo a realizarse. Más adelante se dan los parámetros a seguirse para cada ensayo.
• Sellar el orificio dejado por el taladro con concreto fresco
Ensayo de Extracción de Núcleos
• Calcular la resistencia a la compresión usando el área de la sección transversal basada en el diámetro promedio del espécimen.
• Si la relación longitud-diámetro (L/D) es 1.75 o menos, multiplicar el valor de la resistencia a la compresión por el Factor de Corrección.
RESULTADOS DE LA PRUEBA
• El concreto se considerará adecuado si el promedio de resistencia a la compresión de los tres núcleos es mayor o igual que un 85% de f’c especificada y si ningún nucleo tiene una resistencia menor del 75% de la f’c.
• Si hay alguna duda se puede repetir la prueba una sola vez
• Si se confirma la baja resistencia, deberá corregirse la causa revisando el contenido de cemento, el proporcionamiento, los agregados, la relación A/C, un mejor control o la reducción del revenimiento, el mezclado, la transportación, una reducción en el tiempo de entrega, el control del contenido de aire, colocación en los moldes y sobre todo la compactación y el curado. Si los corazones resultan persistente de mayor resistencia que los cilindros, se revisarán los procedimientos de fabricación de cilindros y el equipo de laboratorio, y sobre todo el curado, la trasportación de los cilindros, el cabeceado y calibración de la prensa
En el ensayo de extracción de núcleos los factores que influyen sobre la determinación de la resistencia son: el diámetro del núcleo, la relación longitud / diámetro, presencia de armadura dentro del núcleo y las condiciones de humedad antes y durante el ensayo
MÉTODO DE ENSAYO NORMALIZADO PARA RESISTENCIA A LA COMPRESIÓN DE CILÍNDRICOS DE CONCRETO
- Este método de ensayo trata sobre la determinación de la resistencia a compresión de cilíndricos de concreto, tales como cilindros moldeados y núcleos perforados. Se encuentra limitado al concreto que tiene un densidad mayor que 800 kg/m3.
- Esta norma no pretende tener en cuenta todo lo relativo a seguridad. Es responsabilidad del usuario de esta norma establecer prácticas apropiadas de seguridad y salud y determinar la aplicabilidad de las limitaciones regulatorias previo al uso.
6. FACTORES QUE INCIDEN EN LA RESISTENCIA A LA COMPRESIÓN , RELACIÓN A/C
“Ley de Abrams”, según la cual, para los mismos materiales y condiciones de ensayo, la resistencia del concreto completamente compactado, a una edad dada, es inversamente proporcional a la relación agua-cemento. Este es el factor más importante en la resistencia del concreto: Relación agua-cemento = A/C
DETERMINACIÓN DE LA RESISTENCIA DEL CONCRETO A LA TRACCIÓN MÉTODO DE COMPRESIÓN DIAMETRAL
Esta Norma Técnica Peruana establece el procedimiento para la determinación de la resistencia a la tracción por compresión diametral de especímenes cilíndricos de hormigón (concreto), tales como cilindros moldeados y testigos diamantinos.
Resumen del Método
• Este método de ensayo consiste en aplicar una fuerza de compresión diametral a toda la longitud de un espécimen cilíndrico de concreto, a una velocidad prescrita, hasta que ocurra la falla.
Velocidad de Carga
• La carga se aplicará en forma continua y evitando impactos, a una velocidad constante dentro del rango de 689 kPa/min a 1380 kPa/min hasta que falle el cilindro por el esfuerzo de tracción por comprensión diametral.
• Expresión de Resultados
La resistencia a la tracción por comprensión diametral de la probeta se calcula con la siguiente fórmula:
T = 2P / π.l.d
Donde:
T = Resistencia a la tracción por comprensión diametral, kPa.
P = Máxima carga aplicada indicada por la máquina de ensayo, kN.
l = longitud, m.
d = Diámetro, m.
7. RESISTENCIA A LA FLEXIÓN
La resistencia a la flexión del concreto es una medida de la resistencia a la tracción del concreto (hormigón). Es una medida de la resistencia a la falla por momento de una viga o losa de concreto no reforzada. Se mide mediante la aplicación de cargas a vigas de concreto de 6 x 6 pulgadas (150 x 150 mm) de sección transversal y con luz de como mínimo tres veces el espesor.
La resistencia a la Flexión se expresa como el Módulo de Rotura (MR) en libras por pulgada cuadrada (MPa) y es determinada mediante los métodos de ensayo ASTM C78 (cargada en los puntos tercios) o ASTM C293 (cargada en el punto medio).
ENSAYOS PARA DETERMINAR LA RESISTENCIA A LA FLEXIÓN NTP 339.078
Método de ensayo para determinar la resistencia a la flexión del hormigón en vigas simplemente apoyadas con carga a los tercios del tramo.
Objeto:
• La Norma Técnica Peruana establece el procedimiento para determinar la resistencia a la flexión de probetas en forma de vigas simplemente apoyadas, moldeadas con concreto o de probetas cortadas extraídas de concreto endurecido y ensayadas con cargas a los tercios.
Resumen del método:
• Este método de ensayo consiste en aplicar una carga a los tercios de la una probeta de ensayo en forma de vigueta, hasta que la falla ocurra. El módulo de rotura, se calculará, según que la grieta se localice dentro del tercio medio o a una distancia de éste, no mayor del 5% de la luz libre.
8. RELACIÓN RESISTENCIA A LA FLEXIÓN - RESISTENCIA DE COMPRESIÓN
• La resistencia a flexión o el módulo de ruptura se usa en el diseño de pavimentos u otras losas (pisos, placas) sobre el terreno. La resistencia a compresión, la cual es más fácil de ser medida que la resistencia a flexión, se puede usar como un índice de resistencia a flexión, una vez que la relación empírica entre ambas ha sido establecida para los materiales y los tamaños de los elementos involucrados.
• La resistencia a flexión de concretos de peso normal es normalmente de 0.7 a 0.8 veces la raíz cuadrada de la resistencia a compresión en megapascales o de 1.99 a 2.65 veces la raíz cuadrada de la resistencia a compresión en kilogramos por centímetros cuadrados (7.5 a 10 veces la raíz cuadrada de la resistencia a compresión en libras por pulgadas cuadradas).
• El Módulo de Rotura es cerca del 10% al 20% de la resistencia a compresión, en dependencia del tipo, dimensiones y volumen del agregado grueso utilizado, sin embargo, la mejor correlación para los materiales específicos es obtenida mediante ensayos de laboratorio para los materiales dados y el diseño de la mezcla.
LA DURABILIDAD DEL CONCRETO
El ACI define la durabilidad del concreto de cemento Pórtland como la habilidad para resistir la acción del intemperismo, el ataque químico, abrasión, y cualquier otro proceso o condición de servicio de las estructuras, que produzcan deterioro del concreto.
La conclusión primordial que se desprende de esta definición es que la durabilidad no es un concepto absoluto que dependa sólo del diseño de mezcla, sino que está en función del ambiente y las condicione de trabajo a las cuales lo sometamos.
En este sentido, no existe un concreto “durable” por sí mismo, ya que las características físicas, químicas y resistentes que pudieran ser adecuadas para ciertas circunstancias, no necesariamente lo habilitan para seguir sido “durable” bajo condiciones diferentes.
Tradicionalmente se asoció la durabilidad a las características resistentes del concreto, y particularmente a su resistencia en compresión, pero las experiencias particularmente a su resistencia en compresión, pero las experiencias prácticas y el avance de la investigación en este campo han demostrado que es sólo uno de los aspectos involucrados, pero no el único ni el suficiente para obtener un concreto durable.
En consecuencia, el problema de la durabilidad es sumamente complejo en la medida en que cada situación de exposición ambiental y condición de servicio ameritan una especificación particular tanto para los materiales y diseño de mezcla, como para los aditivos, la técnica de producción y el proceso constructivo, por lo que es usual que en este campo las generalizaciones resulten nefastas.
Bryant Mather, uno de los pioneros en la investigación en Tecnología del Concreto y en el área de la durabilidad indica en uno de sus trabajos: “Está demostrado científicamente que las estructuras de concreto se comportan inadecuadamente debido a que las especificaciones técnicas fueron deficientes o que éstas fueron correctas pero no se siguieron en la obra”.
Es obvio pues que en este aspecto se debe desterrar una práctica muy común en nuestro medio como es la de repetir, copiar o “adaptar” especificaciones técnicas locales aparentes, pero que sin embargo desde el punto de vista de la Tecnología del Concreto y la durabilidad requieren una evaluación y criterios particulares.
FACTORES QUE AFECTAN LA DURABILIDAD DEL CONCRETO
En este acápite delinearemos los factores que influyen en el deterioro del concreto y consecuentemente en la durabilidad, debiendo tenerse presente que no se incluye dentro de ellos la fisuración pues este es un síntoma de los cambios volumétricos y no un factor en sí, por lo que su tratamiento ha sido materia de un desarrollo particular .
Los factores mencionados se clasifican en 5 grupos.
- Congelamiento y descongelamiento (Freezing Thawing)
- Ambiente químicamente agresivo
- Abrasión
- Corrosión de metales en el concreto
- Reacción químicas en los agregados
Existen factores que influyen en la durabilidad, clasificados desde el punto de vista del mecanismo de ataque al concreto y que representan subdivisiones y análisis más profundos que los ya mencionados (reacciones no ácidas, ácido carbónico en el agua, ataque de sales de magnesio, agresión de grasas animales etc.) pero que no trataremos en el presente Capítulo por estar más relacionados con la investigación académica de estos fenómenos que con su trascendencia práctica, ya que la frecuencia de ocurrencia de tales agentes es muy aislada.
CONGELAMIENTO Y DESHIELO Y SU MECANISMO
Constituye un agente de deterioro que ocurre en los climas en que la temperatura desciende hasta provocar el congelamiento del agua contenida en los poros capilares del concreto. En términos generales el fenómeno se caracteriza por inducir esfuerzos internos en el concreto que pueden provocar su fisuración reiterada y la consiguiente desintegración.
Es importante tener claro que es un fenómeno que se da tanto a nivel de la pasta de cemento, como en los agregados de manera independiente, así como en la interacción entre ambos, por lo que su evaluación debe abordar cada uno de estos aspectos.
- Efecto en la pasta de cemento
Existen dos teorías que explican el efecto en el cemento. La primera se denomina de “Presión hidráulica” que considera que dependiendo del grado de saturación de los poros capilares y poros del gel, la velocidad de congelamiento y la permeabilidad de la pasta, al congelarse el agua en los poros ésta aumenta de volumen y ejerce presión sobre el agua aún en estado líquido, ocasionando tensiones en la estructura resistente.
Si estas tensiones superan los esfuerzos últimos de la pasta, se produce la rotura.
La segunda teoría llamada de “Presión osmótica” asume las mismas consideraciones iniciales de la anterior pero supone que al congelarse el agua en los poros cambia la alcalinidad del agua aún en estado líquido, por lo que tiende a dirigirse hacia las zonas congeladas de alcalinidad menor para entrar en solución , lo que genera una presión osmótica del agua líquida sobre la sólida ocasionando presiones internas en la estructura resistente de la pasta con consecuencia similares al caso anterior.
Bajo ambas teorías, al producirse el descongelamiento se liberan las tensiones y al repetirse este ciclo muchas veces se produce la rotura por fatiga de la estructura de la pasta, si es que no se produjo inicialmente.
- Efecto en los agregados
En los agregados existe evidencia de que por los tamaños mayores de los poros capilares se producen generalmente presiones hidráulicas y no osmóticas, con esfuerzos internos similares a los que ocurren en la pasta de cemento, existiendo indicios que el Tamaño máximo tiene una influencia importante.
Estimándose que para cada tipo de material existe un Tamaño máximo por de bajo del cual se puede producir el congelamiento confinado dentro del concreto sin daño interno en los agregados.
Por otro lado, cuanto menor sea la capacidad del agregado para absorber agua, menor será el efecto del congelamiento interno de la misma.
- Efecto entre la pasta y los agregados.
Existe la denominada “Teoría Elástica” que considera un efecto mixto de los agregados sobre la pasta, ya que al congelarse el agua dentro de ellos, se deforman elásticamente sin romperse por tener una estructura más resistente que la del cemento y ejercen presión directa sobre la pasta generando tensiones adicionales a las ocasionadas en el cemento independientemente.
AMBIENTE QUÍMICAMENTE AGRESIVO
El concreto es un material que en general tiene un comportamiento satisfactorio ante diversos ambientes químicamente agresivos.
El concepto básico reside en que el concreto es químicamente inalterable al ataque de agentes químicos que se hallan en estado sólido.
Para que exista alguna posibilidad de agresión el agente químico debe estar en solución en una cierta concentración y además tener la opción de ingresar en la estructura de la pasta durante un tempo considerable, es decir debe haber flujo de la solución concentrada hacia el interior del concreto y este flujo debe mantenerse el tiempo suficiente para que se produzca la reacción.
Este marco de referencia reduce pues las posibilidades de ataque químico externo al concreto, existiendo algunos factores generales que incrementan la posibilidad de deterioro como son: las temperaturas elevadas, velocidades de flujo altas, mucha absorción y permeabilidad, el curado deficiente y los ciclos de humedecimiento y secado.
Los ambientes agresivos usuales están constituidos por aire, agua y suelos contaminados que entran en contacto con las estructuras de concreto.
Se puede decir pues que el concreto es uno de los materiales que demuestra mayor durabilidad frente a ambientes químicamente agresivos, ya que si se compara estadísticamente los casos de deterioro con aquellos en que mantiene sus condiciones iniciales pese a la agresividad, se concluye en que estos casos son excepcionales.
EFECTO DE COMPUESTOS QUÍMICOS CORRIENTES SOBRE EL CONCRETO
En la Tabla 12.2 se puede apreciar el efecto de varias sustancias químicas comunes sobre el concreto simple, comprobándose pues que son muy poscas la que realmente le acusan un daño importante.
Dentro de este panorama, los compuestos que por su disponibilidad en el medio ambiente producen la mayoría de casos de ataque químico al concreto están constituidos por los cloruros y los sulfatos.
CLORUROS
Los cloruros se hallan normalmente en el ambiente en las zonas cercanas al mar, en el agua marina, y en ciertos suelos y aguas contaminadas de manera natural o artificial.
Como se observa en la Tabla 12.2, los cloruros tienen una acción insignificante sobre el concreto desde el punto de vista de la agresión química directa, pero erradamente se les considera en muchas oportunidades causantes del deterioro que es producido por otros agentes.
SULFATOS
Los sulfatos que afectan la durabilidad se hallan usualmente en el suelo en contacto con el concreto, en solución en agua de lluvia, en aguas contaminadas por deshechos industriales o por flujo en suelos agresivos.
Por lo general consisten en sulfatos de Sodio, Potasio, Calcio y Magnesio.
Los suelos con sulfatos se hallan normalmente en zonas áridas, y pese a que pueden no estar en muy alta concentración, si se producen ciclos de humedecimiento y secado sobre el concreto, la concentración puede incrementarse y causar deterioro.
El mecanismo de acción de los sulfatos considera dos tipos de reacción química:
- Combinación del sulfato con Hidróxido de Calcio libre (Cal Hidratada) liberado durante la hidratación del cemento, formándose Sulfato de calcio (Yeso) de propiedades expansivas.
- Combinación de Yeso con Aluminato Cálcico Hidratado para formar Sulfoaluminato de Calcio (Etringita) también con características de aumento de volumen. Algunos investigadores indican que existe un efecto puramente físico causado por la cristalización de las sales sulfatadas en los poros del concreto con aumento de volumen y deterioro.
ABRASIÓN
Se define la resistencia a la abrasión como la habilidad de una superficie de concreto a ser desgastada por roce y fricción.
Este fenómeno se origina de varias maneras, siendo las más comunes las atribuidas a las condiciones de servicio, como son el tránsito de peatones y vehículos sobre veredas y losas, el efecto del viento cargado de partículas sólidas y el desgaste producido por el flujo continuo de agua.
En la mayoría de los casos, el desgaste por abrasión no ocasiona problemas estructurales, sin embargo puede traer consecuencias en el comportamiento bajo las condiciones de servicio o indirectamente propiciando el ataque de algún otro enemigo de la durabilidad (agresión química, corrosión etc) siendo esto último más evidente en el caso de las estructuras hidráulicas.
CORROSIÓN DE METALES EN EL CONCRETO
El concreto por ser un material con una alcalinidad muy elevada (pH > 12.5), y alta resistividad eléctrica constituye uno de los medios ideales para proteger metales introducidos en su estructura, al representar una barrera protectora contra la corrosión.
Pero si por circunstancias internas o externas se cambian estas condiciones de protección, se produce el proceso electroquímico de la corrosión generándose compuestos de óxidos de hierro que llegan a triplicar el volumen original del hierro, destruyendo el concreto al hincharse y generar esfuerzos internos.
En el concreto pueden incluirse una serie de metales dependiendo de la utilidad que queramos darle, pero lo real es que el acero es el metal de mayor uso desde que se desarrolló el concreto reforzado y sus múltiples aplicaciones, por lo que en este acápite nos limitaremos a considerar sólo el caso de la corrosión del acero de refuerzo.
RECOMENDACIONES SOBRE REACCIONES QUÍMICAS EN LOS AGREGADOS
Como ya mencionamos, en nuestro medio no hay muchos antecedentes de ocurrencia de este tipo de reacciones pese a que por ejemplo la andesita es un mineral muy abundante en nuestro país, pero es probable que la cantidad de obras que se hayan ejecutado en las zonas que pudieran ser potencialmente reactivas no hayan ameritado el empleo masivo de estos materiales, o simplemente no tienen la reactividad que tienen en otros países donde le problema sí es grave.
En todo caso, es factible efectuar en el Perú los ensayos ASTM para evaluar estos materiales, y sería posible también implementar la prueba sudafricana y la de la Universidad de Cornell, sin embargo no existe la experiencia práctica desde el punto de vista de los ensayos petrográficos por ejemplo, donde tiene suma importancia la experiencia del evaluador que usualmente es un Geólogo o un Ingeniero de Minas que no pueden opinar mucho del mineral con relación a su comportamiento con el cemento, dado que no existe en nuestras Universidades de especialidad de Tecnologistas en Concreto, que pudieran ir formando profesionales orientados hacia estos problemas.
En conclusión, la mejor recomendación al evaluar una cantera donde haya sospecha de reactividad alcalina es recopilar la mayor información estadística sobre el uso anterior de los agregados en la producción de concreto e inspeccionar las obras ejecutadas para poder estimar el riesgo.
Finalmente, se ha comprobado que algunos métodos alternativos para prevenir la reactividad alcalina son el empleo de sales de Litio (LiOH, LiF, Li2CO3), como aditivos en la mezcla, el reemplazo de al menos el 25% del cemento por cenizas volátiles y el uso de puzolanas.
Comentarios
Publicar un comentario